Polarizability Model
The polarizability module PiNet2-\(\chi\) implements different models to predict the charge response kernel (CRK)
and polarizability tensor by fitting polarizability tensor data 1. All models output the polarizability tensor \(\boldsymbol{\alpha}\) and CRK \(\boldsymbol{\chi}\). The polarizability model requires the dictionary as output from the preprocess layer as input. Listed below are the model_params
that can be set. The EEM 2 and ACKS2 3 models are based on the
Coulomb kernel and have support for Ewald summation if the Ewald parameters are set and cell
is specified in the input data. The EEM and EtaInv models can in addition to polarizability be
trained on the egap.
Parameter | Default | Description |
---|---|---|
ewald_rc |
None |
Ewald short-range cut-off |
ewald_kmax |
None |
Maximum k for Ewald summation |
ewald_eta |
None |
Gaussian width for Ewald summation |
p_scale |
1 |
Polarization unit during training |
p_unit |
1 |
Output unit of polarizability during prediction (default: atomic units) |
p_loss_multiplier |
1 |
Weight of polarizability loss |
train_egap |
0 |
Whether to train on egap data |
eval_egap |
0 |
Whether to return egap predictions |
Model specifications
pinn.models.pol_models.pol_eem_fn
The EEM model calculates \(\boldsymbol{\chi}\) based on electronegativity equalization. The matrix \(\boldsymbol{\eta}_\mathrm{e}\) is calculated as
where \(\zeta_i\) are trainable Gaussian parameters. \(\boldsymbol{\chi}\) is then calculated as:
Source code in pinn/models/pol_models.py
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
pinn.models.pol_models.pol_acks2_fn
The ACKS2 model calculates \(\boldsymbol{\chi}\) based on the Dyson equation:
where \(\boldsymbol{\eta}_\mathrm{e}\) is calculated as in the EEM model and \(\boldsymbol{\chi}_\mathrm{s}\) is calculated from output interactions \(\mathbb{I}_{ij}\):
Source code in pinn/models/pol_models.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
|
pinn.models.pol_models.pol_etainv_fn
The EtaInv model directly predicts the matrix \(\boldsymbol{\eta}^{-1}\) as
where c is a small positive constant and \(\mathbf{B}\) is the predicted matrix
Source code in pinn/models/pol_models.py
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
|
pinn.models.pol_models.pol_local_fn
The Local model calculates \(\boldsymbol{\chi}\) and \(\boldsymbol{\alpha}\) as sums of local predictions \(\boldsymbol{\chi}_i\) and \(\boldsymbol{\alpha}_i\). Local predictions are calculated as
where \(\mathbf{e}_i\) is the \(i\):th standard unit vector.
Source code in pinn/models/pol_models.py
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
|
pinn.models.pol_models.pol_localchi_fn
In the Local chi model \(\boldsymbol{\chi}\) = \(\boldsymbol{\chi}_\mathrm{s}\) as calculated in the ACKS2 model.
Source code in pinn/models/pol_models.py
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
|
pinn.models.pol_models.pol_eem_iso_fn
EEM-model with the addition of an isotropic term for the polarizability tensor.
Source code in pinn/models/pol_models.py
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
|
pinn.models.pol_models.pol_acks2_iso_fn
ACKS2-model with the adddition of an isotropic term for the polarizability tensor.
Source code in pinn/models/pol_models.py
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
|
pinn.models.pol_models.pol_etainv_iso_fn
EtaInv-model with the addition of an isotropic term for the polarizability tensor.
Source code in pinn/models/pol_models.py
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
|
pinn.models.pol_models.pol_local_iso_fn
Local model with the addition of an isotropic term for the polarizability tensor.
Source code in pinn/models/pol_models.py
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
|
pinn.models.pol_models.pol_localchi_iso_fn
Local chi-model with the addition of an isotropic term for the polarizability tensor.
Source code in pinn/models/pol_models.py
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
|
-
1 Y. Shao, L. Andersson, L. Knijff, and C. Zhang, “Finite-field coupling via learning the charge response kernel,” Electron. Struct. 4(1), 014012 (2022). ↩
-
1 W.J. Mortier, K. Van Genechten, and J. Gasteiger, “Electronegativity equalization: Application and parametrization,” J. Am. Chem. Soc. 107(4), 829–835 (1985). ↩
-
1 T. Verstraelen, P.W. Ayers, V.V. Speybroeck, and M. Waroquier, “ACKS2: Atom-condensed kohn-sham DFT approximated to second order,” J. Chem. Phys. 138(7), 074108 (2013). ↩