The PiNet2 network
PiNet2 represents the next generation of PiNet, now equipped with equivariant support. PiNet2 shows a significant and cost-effective improvement on energy and force predictions cross different types of datasets ranging from small molecules to liquid electrolytes, as compared to PiNet. The equivariant features turn out to also improve significantly the dipole and polarizability predictions, as demonstrated by the upgraded PiNet2-dipole and PiNet2-\(\chi\).
The new modularized PiNet2 supports scalar, vectorial, and tensorial representations. Maximum rank can be specified by using rank
argument at initialization. Intermediate variables also can be transformed and exposed by using out_extra
. out_extra={'p3': 1}
indicates that, in addition to the scalar output, a dictionary will be returned containing the key p3
with a Tensor
value shaped as (..., n_channel=1)
.
Network architecture
The overall architecture of PiNet2 is illustrated with the illustration below:
PiNet2 builds upon the structure of PiNet, incorporating vectorial and tensorial equivariables represented by the blue and green nodes. The invariant P1
is implemented through the InvarLayer
, while the equivariants P3
and P5
utilize the EquivarLayer
without non-linear activations. Further details on these new layers are provided below."
Indices denoted the dimensionality of each variable still following previous the convention:
- \(b\): basis function index;
- \(\alpha,\beta,\gamma,\ldots\): feature channels;
- \(i,j,k,\ldots\): atom indices;
- \(x,y,z\): Cartesian coordinate indices.
The number in the upper left of a variable denotes its dimension. For instance, \({}^{3}\mathbb{P}^{t}_{ix\zeta}\) represents a property in \(\mathbb{R}^3\), where \(x\) indicates an index for the three spatial coordinates. Here, \(t\) is an iterator, and \(t + 1\) increments up to the total number of graph convolution (CG) blocks.
The parameters for PiNet2
are outlined in the network specification and can be applied in the configuration file as shown in the following snippet:
"network": {
"name": "PiNet2",
"params": {
"atom_types": [1, 8],
"basis_type": "gaussian",
"depth": 5,
"ii_nodes": [16, 16, 16, 16],
"n_basis": 10,
"out_nodes": [16],
"pi_nodes": [16],
"pp_nodes": [16, 16, 16, 16],
"rank": 3,
"rc": 6.0,
"weighted": False
}
},
DotLayer
and PIXLayer
, by default is False
. The detailed equations for these layers are provided below.
Network specification
pinet2.PiNet2
Bases: Model
This class implements the Keras Model for the PiNet network.
Source code in pinn/networks/pinet2.py
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
__init__(atom_types=[1, 6, 7, 8], rc=4.0, cutoff_type='f1', basis_type='polynomial', n_basis=4, gamma=3.0, center=None, pp_nodes=[16, 16], pi_nodes=[16, 16], ii_nodes=[16, 16], out_nodes=[16, 16], out_units=1, out_extra={}, out_pool=False, act='tanh', depth=4, weighted=False, rank=3)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
atom_types
|
list
|
elements for the one-hot embedding |
[1, 6, 7, 8]
|
rc
|
float
|
cutoff radius |
4.0
|
cutoff_type
|
string
|
cutoff function to use with the basis. |
'f1'
|
basis_type
|
string
|
basis function, can be "polynomial" or "gaussian" |
'polynomial'
|
n_basis
|
int
|
number of basis functions to use |
4
|
gamma
|
float or array
|
width of gaussian function for gaussian basis |
3.0
|
center
|
float or array
|
center of gaussian function for gaussian basis |
None
|
pp_nodes
|
list
|
number of nodes for PPLayer |
[16, 16]
|
pi_nodes
|
list
|
number of nodes for PILayer |
[16, 16]
|
ii_nodes
|
list
|
number of nodes for IILayer |
[16, 16]
|
out_nodes
|
list
|
number of nodes for OutLayer |
[16, 16]
|
out_units
|
int
|
number of output feature |
1
|
out_extra
|
dict[str, int]
|
return extra variables |
{}
|
out_pool
|
str
|
pool atomic outputs, see ANNOutput |
False
|
act
|
string
|
activation function to use |
'tanh'
|
depth
|
int
|
number of interaction blocks |
4
|
weighted
|
bool
|
whether to use weighted style |
False
|
rank
|
int[1, 3, 5]
|
which order of variable to use |
3
|
Source code in pinn/networks/pinet2.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
call(tensors)
PiNet takes batches atomic data as input, the following keys are required in the input dictionary of tensors:
ind_1
: sparse indices for the batched data, with shape(n_atoms, 1)
;elems
: element (atomic numbers) for each atom, with shape(n_atoms)
;coord
: coordintaes for each atom, with shape(n_atoms, 3)
.
Optionally, the input dataset can be processed with
PiNet.preprocess(tensors)
, which adds the following tensors to the
dictionary:
ind_2
: sparse indices for neighbour list, with shape(n_pairs, 2)
;dist
: distances from the neighbour list, with shape(n_pairs)
;diff
: distance vectors from the neighbour list, with shape(n_pairs, 3)
;prop
: initial properties(n_pairs, n_elems)
;
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensors
|
dict of tensors
|
input tensors |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
tensor
|
output tensor with shape |
Source code in pinn/networks/pinet2.py
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
Layer specifications
pinet2.PIXLayer
Bases: Layer
PIXLayer
takes the equalvariant properties \({}^{3}\mathbb{P}_{ix\zeta}\) as input and outputs interactions for each pair \({}^{3}\mathbb{I}_{ijx\zeta}\). The PIXLayer
has two styles, specified by the weighted
argument. The weight matrix \(W\) is initialized randomly using the glorot_uniform
initializer.
non-weighted
(default):
weighted
(experimental):
Source code in pinn/networks/pinet2.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
__init__(weighted, **kwargs)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weighted
|
bool
|
style of the layer, should be a bool |
required |
Source code in pinn/networks/pinet2.py
48 49 50 51 52 53 54 |
|
call(tensors)
PILayer take a list of three tensors as input:
- ind_2: sparse indices of pairs with shape
(n_pairs, 2)
- prop: equalvariant tensor with shape
(n_atoms, x, n_prop)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensors
|
list of tensors
|
list of |
required |
Returns:
Name | Type | Description |
---|---|---|
inter |
tensor
|
interaction tensor with shape |
Source code in pinn/networks/pinet2.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
pinet2.DotLayer
Bases: Layer
DotLayer
stands for the dot product \(\langle,\rangle\). DotLayer
has two styles, specified by the weighted
argument. The weight matrix \(W\) is initialized randomly using the glorot_uniform
initializer.
non-weighted
(default):
weighted
(experimental):
Source code in pinn/networks/pinet2.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
__init__(weighted, **kwargs)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weighted
|
bool
|
style of the layer |
required |
Source code in pinn/networks/pinet2.py
124 125 126 127 128 129 130 |
|
call(tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor
|
`tensor`
|
tensor to be dot producted |
required |
Returns:
Name | Type | Description |
---|---|---|
tensor |
`tensor`
|
dot producted tensor |
Source code in pinn/networks/pinet2.py
137 138 139 140 141 142 143 144 145 146 147 148 |
|
pinet2.ScaleLayer
Bases: Layer
ScaleLayer
represents the scaling of a equalvariant property tensor by a scalar, and has no learnable variables. The ScaleLayer
takes two tensors as input and outputs a tensor of the same shape as the first input tensor, i.e.:
Source code in pinn/networks/pinet2.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
|
call(tensor)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensor
|
list of tensors
|
list of |
required |
Returns:
Name | Type | Description |
---|---|---|
tensor |
`tensor`
|
scaled tensor |
Source code in pinn/networks/pinet2.py
164 165 166 167 168 169 170 171 172 173 |
|
pinet2.OutLayer
Bases: Layer
OutLayer
updates the network output with a FFLayer
layer, where the
out_units
controls the dimension of outputs. In addition to the FFLayer
specified by n_nodes
, the OutLayer
has one additional linear biasless
layer that scales the outputs, specified by out_units
.
Source code in pinn/networks/pinet2.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
__init__(n_nodes, out_units, **kwargs)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_nodes
|
list
|
dimension of the hidden layers |
required |
out_units
|
int
|
dimension of the output units |
required |
**kwargs
|
dict
|
options to be parsed to dense layers |
{}
|
Source code in pinn/networks/pinet2.py
184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
call(tensors)
OutLayer takes a list of three tensors as input:
- ind_1: sparse indices of atoms with shape
(n_atoms, 2)
- prop: property tensor with shape
(n_atoms, n_prop)
- prev_output: previous output with shape
(n_atoms, out_units)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensors
|
list of tensors
|
list of [ind_1, prop, prev_output] tensors |
required |
Returns:
Name | Type | Description |
---|---|---|
output |
tensor
|
an updated output tensor with shape |
Source code in pinn/networks/pinet2.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
pinet2.InvarLayer
Bases: Layer
InvarLayer
is used for invariant features with non-linear activation. It consists of PI-II-IP-PP
layers, which are executed sequentially."
Source code in pinn/networks/pinet2.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
call(tensors)
InvarLayer take a list of three tensors as input:
- ind_2: sparse indices of pairs with shape
(n_pairs, 2)
- p1: scalar tensor with shape
(n_atoms, n_prop)
- basis: interaction tensor with shape
(n_pairs, n_basis)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensors
|
list of tensors
|
list of |
required |
Returns:
Name | Type | Description |
---|---|---|
p1 |
tensor
|
updated scalar property |
i1 |
tensor
|
interaction tensor with shape |
Source code in pinn/networks/pinet2.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
|
pinet2.EquivarLayer
Bases: Layer
EquivarLayer
is used for equivariant features without non-linear activation. It includes PI-II-IP-PP
layers, along with Scale
and Dot
layers.
Source code in pinn/networks/pinet2.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
call(tensors)
EquivarLayer take a list of four tensors as input:
- ind_2: sparse indices of pairs with shape
(n_pairs, 2)
- px: equivariant tensor with shape
(n_atoms, n_components, n_prop)
- p1: scalar tensor with shape
(n_atoms, n_prop)
- diff: displacement vector with shape
(n_pairs, 3)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tensors
|
list of tensors
|
list of |
required |
Returns:
Name | Type | Description |
---|---|---|
px |
tensor
|
equivariant property with shape |
ix |
tensor
|
equivariant interaction with shape |
dotted_px |
tensor
|
dotted equivariant property |
Source code in pinn/networks/pinet2.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|