Benchmarks

About the benchmark

PiNN collects a small set of benchmarks that are continuously tested against (see version convention). The benchmark datasets and trained models are accessible from the shared box folder.

Latest benchmarks (v2.0.0)

We have introduced equivariant features (P3 and P5) into the second-generation of PiNet. PiNet2-P3 shows a significant and cost-effective improvement on energy and force predictions across different types of datasets ranging from small molecules to crystalline materials, as compared to PiNet.

QM91

PiNet2-P3 Energy MAE: 8.0(std:0.1) meV

MD172

Energy (meV) PiNet (Forces only) PiNet2-P3 (Forces only) PiNet PiNet2-P3
Aspirin - - 17 (3) 5.1 (8)
Ethanol - - 1.2 (2) 1.1 (3)
Malonaldehyde - - 3.7 (9) 1.4 (5)
Naphthalene - - 8.0 (7) 1.4 (7)
Salicylic acid - - 8.2 (6) 2.3 (8)
Toluene - - 7 (2) 1.1 (3)
Uracil - - 30 (3) 5.2 (1)
Force (meV/Å) PiNet (Forces only) PiNet2-P3 (Forces only) PiNet PiNet2-P3
Aspirin 47.7 (6) 11.9 (7) 54 (3) 17 (1)
Ethanol 6.3 (8) 5.2 (2) 7.8 (2) 6.1 (9)
Malonaldehyde 14 (1) 7.1 (5) 14.4 (9) 7.5 (6)
Naphthalene 31 (1) 1.9 (1) 33 (2) 2.9 (1)
Salicylic acid 42 (2) 6.1 (8) 44 (2) 8.3 (4)
Toluene 23 (1) 2.2 (4) 27.8 (4) 3.3 (4)
Uracil 25 (2) 3.9 (8) 30 (3) 5.2 (1)

Materials Project

MPF.2021.2.83

Energy only PiNet PiNet2-P3 PiNet2-P5
Energy (meV) 35(4) 35(4) 32.2(4)
Energy & Force PiNet PiNet2-P3 PiNet2-P5
Energy (meV) 42.0 (8) 36(1) 34.9 (7)
Force (meV/Å) 89(1) 73(1) 70(2)

MP-crystal-2018.6.14

PiNet Energy MAE: 29.5(std:0.5) meV/atom

PiNet2-P3 Energy MAE: 29 (std:1 ) meV/atom

PiNet2-P3 Energy MAE: 27.7(std:0.5) meV/atom

Performance

The training and inference computational costs were evaluated on an NVIDIA A100 GPU using the MPF.2021.2.8 dataset:

performance_benchmark

Previous benchmarks (v1.2.0.dev0)

QM91

Energy MAE: 15.0(std:0.83) meV.

MD172

Reproducing the benchmark

To manually run the benchmarks with the latest version of PiNN you will need to have Nextflow and Singularity installed.

nextflow run teoroo-cmc/pinn -r master

For developers

Install PiNN in editable mode and run the benchmark from the PiNN folder. You will probably need to set up the development environments on an HPC cluster (e.g. ALVIS):

ml TensorFlow/2.6.0-foss-2021a-CUDA-11.3.1
python -m venv $HOME/pinn-tf26
source $HOME/pinn-tf26/bin/activate
git clone https://github.com/Teoroo-CMC/PiNN.git && pip install -e PiNN
cd PiNN

And run the benchmark using a corresponding profile:

export SLURM_ACCOUNT=NAISS2023-5-282
export SALLOC_ACCOUNT=$SLURM_ACCOUNT
export SBATCH_ACCOUNT=$SLURM_ACCOUNT
nextflow run . -profile alvis

Adjust the scheduler setup in nextflow.config if needed.


  1. 1 R. Ramakrishnan, P.O. Dral, M. Rupp, and O.A. von Lilienfeld, “Quantum chemistry structures and properties of 134 kilo molecules,” Sci. Data 1, 140022 (2014). 

  2. 1 S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, and K.-R. Müller, “Machine learning of accurate energy-conserving molecular force fields,” Sci. Adv. 3(5), (2017). 

  3. 1 C. Chen, and S.P. Ong, “A universal graph deep learning interatomic potential for the periodic table,” Nat. Comput. Sci. 2(11), 718–728 (2022). 

  4. 1 C. Chen, W. Ye, Y. Zuo, C. Zheng, and S.P. Ong, “Graph networks as a universal machine learning framework for molecules and crystals,” Chem. Mater. 31(9), 3564–3572 (2019). 

« Previous
Next »