Benchmarks
About the benchmark
PiNN collects a small set of benchmarks that are continuously tested against (see version convention). The benchmark datasets and trained models are accessible from the shared box folder.
Latest benchmarks (v2.0.0)
We have introduced equivariant features (P3 and P5) into the second-generation of PiNet. PiNet2-P3 shows a significant and cost-effective improvement on energy and force predictions across different types of datasets ranging from small molecules to crystalline materials, as compared to PiNet.
QM91
PiNet2-P3 Energy MAE: 8.0(std:0.1) meV
MD172
Energy (meV) | PiNet (Forces only) | PiNet2-P3 (Forces only) | PiNet | PiNet2-P3 |
---|---|---|---|---|
Aspirin | - | - | 17 (3) | 5.1 (8) |
Ethanol | - | - | 1.2 (2) | 1.1 (3) |
Malonaldehyde | - | - | 3.7 (9) | 1.4 (5) |
Naphthalene | - | - | 8.0 (7) | 1.4 (7) |
Salicylic acid | - | - | 8.2 (6) | 2.3 (8) |
Toluene | - | - | 7 (2) | 1.1 (3) |
Uracil | - | - | 30 (3) | 5.2 (1) |
Force (meV/Å) | PiNet (Forces only) | PiNet2-P3 (Forces only) | PiNet | PiNet2-P3 |
---|---|---|---|---|
Aspirin | 47.7 (6) | 11.9 (7) | 54 (3) | 17 (1) |
Ethanol | 6.3 (8) | 5.2 (2) | 7.8 (2) | 6.1 (9) |
Malonaldehyde | 14 (1) | 7.1 (5) | 14.4 (9) | 7.5 (6) |
Naphthalene | 31 (1) | 1.9 (1) | 33 (2) | 2.9 (1) |
Salicylic acid | 42 (2) | 6.1 (8) | 44 (2) | 8.3 (4) |
Toluene | 23 (1) | 2.2 (4) | 27.8 (4) | 3.3 (4) |
Uracil | 25 (2) | 3.9 (8) | 30 (3) | 5.2 (1) |
Materials Project
MPF.2021.2.83
Energy only | PiNet | PiNet2-P3 | PiNet2-P5 |
---|---|---|---|
Energy (meV) | 35(4) | 35(4) | 32.2(4) |
Energy & Force | PiNet | PiNet2-P3 | PiNet2-P5 |
---|---|---|---|
Energy (meV) | 42.0 (8) | 36(1) | 34.9 (7) |
Force (meV/Å) | 89(1) | 73(1) | 70(2) |
MP-crystal-2018.6.14
PiNet Energy MAE: 29.5(std:0.5) meV/atom
PiNet2-P3 Energy MAE: 29 (std:1 ) meV/atom
PiNet2-P3 Energy MAE: 27.7(std:0.5) meV/atom
Performance
The training and inference computational costs were evaluated on an NVIDIA A100 GPU using the MPF.2021.2.8 dataset:
Previous benchmarks (v1.2.0.dev0)
QM91
Energy MAE: 15.0(std:0.83) meV.
MD172
- aspirin: Energy MAE: 19.47(std:9.31) meV; Force MAE: 13.65(std:1.19) meV/Å.
- ethanol: Energy MAE: 2.62(std:0.38) meV; Force MAE: 1.98(std:0.08) meV/Å.
- uracil: Energy MAE: 7.44(std:4.00) meV; Force MAE: 6.72(std:0.07) meV/Å.
Reproducing the benchmark
To manually run the benchmarks with the latest version of PiNN you will need to have Nextflow and Singularity installed.
nextflow run teoroo-cmc/pinn -r master
For developers
Install PiNN in editable mode and run the benchmark
from the PiNN
folder. You will probably need to set up the
development environments on an HPC cluster (e.g. ALVIS):
ml TensorFlow/2.6.0-foss-2021a-CUDA-11.3.1
python -m venv $HOME/pinn-tf26
source $HOME/pinn-tf26/bin/activate
git clone https://github.com/Teoroo-CMC/PiNN.git && pip install -e PiNN
cd PiNN
And run the benchmark using a corresponding profile:
export SLURM_ACCOUNT=NAISS2023-5-282
export SALLOC_ACCOUNT=$SLURM_ACCOUNT
export SBATCH_ACCOUNT=$SLURM_ACCOUNT
nextflow run . -profile alvis
Adjust the scheduler setup in nextflow.config
if needed.
-
1 R. Ramakrishnan, P.O. Dral, M. Rupp, and O.A. von Lilienfeld, “Quantum chemistry structures and properties of 134 kilo molecules,” Sci. Data 1, 140022 (2014). ↩↩
-
1 S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, and K.-R. Müller, “Machine learning of accurate energy-conserving molecular force fields,” Sci. Adv. 3(5), (2017). ↩↩
-
1 C. Chen, and S.P. Ong, “A universal graph deep learning interatomic potential for the periodic table,” Nat. Comput. Sci. 2(11), 718–728 (2022). ↩
-
1 C. Chen, W. Ye, Y. Zuo, C. Zheng, and S.P. Ong, “Graph networks as a universal machine learning framework for molecules and crystals,” Chem. Mater. 31(9), 3564–3572 (2019). ↩