:py:mod:`regression` ==================== .. py:module:: regression Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: regression.CCS_regressor .. py:class:: CCS_regressor(N=100, xmin=0, xmax=1, dx=None, sw=False, eps=False) .. py:method:: merge_intervals(x) .. py:method:: rubber_band() .. py:method:: solver(pp, qq, gg, hh, aa, bb, maxiter=300, tol=(1e-10, 1e-10, 1e-10)) :staticmethod: The solver for the objective. :param pp: P matrix as per standard Quadratic Programming(QP) notation. :type pp: matrix :param qq: q matrix as per standard QP notation. :type qq: matrix :param gg: G matrix as per standard QP notation. :type gg: matrix :param hh: h matrix as per standard QP notation :type hh: matrix :param aa: A matrix as per standard QP notation. :type aa: matrix :param bb: b matrix as per standard QP notation :type bb: matrix :param maxiter: maximum iteration steps (default: 300). :type maxiter: int, optional :param tol: tolerance value of the solution (default: (1e-10, 1e-10, 1e-10)). :type tol: tuple, optional :returns: dictionary containing solution details :rtype: sol (dict) .. py:method:: fit(x, y) .. py:method:: const(n_switch) .. py:method:: predict(x) .. py:method:: spline_construction(N) This function constructs the matrices A, B, C, D. :param N: Number of knots :returns: constructed matrices :rtype: cc, dd, bb, aa (matrices) .. py:method:: model(x) Constructs the v matrix. :param self: :returns: The v matrix for a pair. :rtype: ndarray